GRAVITATIONAL LENS MODELING WITH GENETIC ALGORITHMS AND PARTICLE SWARM OPTIMIZERS
نویسندگان
چکیده
منابع مشابه
Multiple Particle Swarm Optimizers with Diversive Curiosity
In this paper we propose a new method, called multiple particle swarm optimizers with diversive curiosity (MPSOα/DC), for improving the search performance of the convenient multiple particle swarm optimizers. It has three outstanding features: (1) Implementing plural particle swarms simultaneously to search; (2) Exploring the most suitable solution in a small limited space by a localized random...
متن کاملNeural Network Learning using Particle Swarm Optimizers
This paper presents a method to employ particle swarm optimization in a split architecture injected with a plain ‘attractor’ configuration. This is achieved by splitting the input vector into two even sub-vectors, each of which is optimized in its own swarm. Then, a plain ‘attractor’ is injected into each swarm. The application of this technique to neural network training is investigated. Key-W...
متن کاملA New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms
Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable...
متن کاملImproved Particle Swarm Optimizers with Application on Constrained Portfolio Selection
Inertia weight is one of the most important adjustable parameters of particle swarm optimization (PSO). The proper selection of inertia weight can prove a right balance between global search and local search. In this paper, a novel PSOs with non-linear inertia weight based on the arc tangent function is provided. The performance of the proposed PSO models are compared with standard PSO with lin...
متن کاملWhen Darwin Met Einstein: Gravitational Lens Inversion with Genetic Algorithms
Gravitational lensing can magnify a distant source, revealing structural detail which is normally unresolvable. Recovering this detail through an inversion of the influence of gravitational lensing, however, requires optimisation of not only lens parameters, but also of the surface brightness distribution of the source. This paper outlines a new approach to this inversion, utilising genetic alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2011
ISSN: 0004-637X,1538-4357
DOI: 10.1088/0004-637x/727/2/80